Predictive modeling targets thymidylate synthase ThyX in Mycobacterium tuberculosis

نویسندگان

  • Kamel Djaout
  • Vinayak Singh
  • Yap Boum
  • Victoria Katawera
  • Hubert F. Becker
  • Natassja G. Bush
  • Stephen J. Hearnshaw
  • Jennifer E. Pritchard
  • Pauline Bourbon
  • Peter B. Madrid
  • Anthony Maxwell
  • Valerie Mizrahi
  • Hannu Myllykallio
  • Sean Ekins
چکیده

There is an urgent need to identify new treatments for tuberculosis (TB), a major infectious disease caused by Mycobacterium tuberculosis (Mtb), which results in 1.5 million deaths each year. We have targeted two essential enzymes in this organism that are promising for antibacterial therapy and reported to be inhibited by naphthoquinones. ThyX is an essential thymidylate synthase that is mechanistically and structurally unrelated to the human enzyme. DNA gyrase is a DNA topoisomerase present in bacteria and plants but not animals. The current study set out to understand the structure-activity relationships of these targets in Mtb using a combination of cheminformatics and in vitro screening. Here, we report the identification of new Mtb ThyX inhibitors, 2-chloro-3-(4-methanesulfonylpiperazin-1-yl)-1,4-dihydronaphthalene-1,4-dione) and idebenone, which show modest whole-cell activity and appear to act, at least in part, by targeting ThyX in Mtb.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid

Thymidylate synthase (TS) enzymes catalyse the biosynthesis of deoxythymidine monophosphate (dTMP or thymidylate), and so are important for DNA replication and repair. Two different types of TS proteins have been described (ThyA and ThyX), which have different enzymic mechanisms and unrelated structures. Mycobacteria are unusual as they encode both thyA and thyX, and the biological significance...

متن کامل

Kinetics and Ligand-Binding Preferences of Mycobacterium tuberculosis Thymidylate Synthases, ThyA and ThyX

BACKGROUND Mycobacterium tuberculosis kills approximately 2 million people each year and presents an urgent need to identify new targets and new antitubercular drugs. Thymidylate synthase (TS) enzymes from other species offer good targets for drug development and the M. tuberculosis genome contains two putative TS enzymes, a conventional ThyA and a flavin-based ThyX. In M. tuberculosis, both TS...

متن کامل

Mechanistic and structural basis for inhibition of thymidylate synthase ThyX

Nature has established two mechanistically and structurally unrelated families of thymidylate synthases that produce de novo thymidylate or dTMP, an essential DNA precursor. Representatives of the alternative flavin-dependent thymidylate synthase family, ThyX, are found in a large number of microbial genomes, but are absent in humans. We have exploited the nucleotide binding pocket of ThyX prot...

متن کامل

Crystallization and preliminary crystallographic studies of a flavin-dependent thymidylate synthase from Helicobacter pylori.

The ThyX enzymes that have recently been identified in various bacteria, including some important human pathogens such as Helicobacter pylori and Mycobacterium tuberculosis, are flavin-dependent thymidylate synthases that function in the place of classic thymidylate synthase enzymes in the biosynthesis of dTMP, which is one of the building blocks of DNA. They are promising targets for the devel...

متن کامل

ProTides of N-(3-(5-(2'-deoxyuridine))prop-2-ynyl)octanamide as potential anti-tubercular and anti-viral agents.

The flavin-dependent thymidylate synthase X (ThyX), rare in eukaryotes and completely absent in humans, is crucial in the metabolism of thymidine (a DNA precursor) in many microorganisms including several human pathogens. Conserved in mycobacteria, including Mycobacterium leprae, and Mycobacterium tuberculosis, it represents a prospective anti-mycobacterial therapeutic target. In a M. tuberculo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016